
0-step K-means for clustering Wikipedia search results

Julian Szymański, Kamil Węgrzynowicz

Department of Electronic, Telecommunication and Informatics

Gdańsk University of Technology, Gdańsk, Poland

Email: julian.szymanski@eti.pg.gda.

Abstract

This article describes an improvement for K-

means algorithm and its application in the form of

a system that clusters search results retrieved

from Wikipedia. The proposed algorithm

eliminates K-means disadvantages and allows one

to create a cluster hierarchy. The main

contributions of this paper include the following:

(1) The concept of an improved K-means

algorithm and its application for hierarchical

clustering. (2) Description of the

WikiClusterSearch system that employs the

proposed algorithm to organize Wikipedia search

results into clusters.

1. Introduction

 Since the beginning of the World Wide Web

information retrieval has become a widely

researched problem. The growing number of

websites raises the need of development methods

for finding resources effectively. Numerous

approaches from Archie and Gopher to modern

search engines have been developed [9]. In 1998

Google started with its revolutionary PageRank

[1] algorithm used for ranking a website’s content,

and till now it is the dominant search engine.

Beside its popularity, it has some drawbacks.

A typical web search engine offers only line-up

presentation of retrieved data. The end user

receives a long list of results that match the query

and are sorted according to some relevance

measures. Often we have to go through many

links before we find those interesting to us.

One way of improving organization within search

results is introduction of categorization based on

similarity measures between returned results (that

can be treated as documents). The similarity

allows one to organize the results into thematic

groups which can be achieved applying clustering

techniques. Clustering makes the search faster as it

allows us to see the results on a higher level of

abstraction. It improves searching quality, because

users don't have to waste their time on irrelevant

websites and are able to find groups of the most

relevant. There are several projects aiming to

group search results (e.g.: clusty, carrot
2
,

PolyMeta and many others). The main problem

with them is the fact the clusters they produce are

not domain oriented – the labels they use weakly

describe the content. The other drawback is the

fixed similarity measure that compares documents

according to the same, one criterion [10].

In our research we find Wikipedia very useful as

the area of the experiments. Researching the

limited repository of the documents allows us to

tune the algorithms and after successful evaluation

scale up them into the unlimited size of whole

Internet. Wikipedia also offers the system of the

categories that can be used as cluster labels which

will make the categorization more user friendly.

2. Clustering algorithms

Clustering algorithms can be divided into two

main groups:

1. Hierarchical algorithms. During one step of the

algorithm the smallest clusters are made. In the

next steps these groups are merged into bigger

ones until one big cluster is made. As a result we

get a hierarchical tree of clusters.
2. Partitioning algorithms. This type of algorithm

results with the creation of flat groups of the most

similar objects.
In this section we describe the K-means

algorithm as the most popular partitioning

algorithm and the Hierarchical Agglomerative

Clustering algorithm as a demonstrator of a

hierarchical, bottom-up approach.

K-means was described by James MacQueen [3]

and it's widely used due to its simplicity. It

requires to provide a priori number of desired

clusters K and creates centroids which are centers

of each cluster. In each iteration documents are

assigned to the nearest centroid. K-means starts

with randomly selected points as centroids. Next it

iterates through all points and assigns each of

them to the nearest centroid. As a result we

receive first clusters. Next, new centroids are

calculated and everything starts from the

beginning, until they stop moving. K-means

minimize an objective function of squared error

[11] described by the formula:

where ||x
(j)

i-cj||
2
 is a distance measure between

point x
(j)

i and centroid cj.

As we consider application of a K-means

algorithm for documents clustering, the following

steps can be selected:

1. Mark as centroid random K documents,

2. Assign to centroid nearest documents,

3. When all documents are assigned, calculate

new centroid positions. The centroid is an

element laying exactly in the centre of a

cluster. A new centroid is calculated as an

arithmetic mean of every document

represented as a point in feature space which

is calculated as:

4. Repeat steps 2 and 3 until centroids stop

moving.

Despite the fact K-means always finds clusters, it

does not guarantee that they will be optimal. It has

a tendency to fall into local minima [4] which

results in non- optimal clusters as output. There's

no guarantee to get a global minimum. Each K-

means execution on the same dataset can provide

different results which is due to its random

initialization - because initial centroids are

selected randomly, the algorithm may return

different results for the same input data. It is also a

reason for falling into the local minima. This is the

main disadvantage of K-means. In order to avoid

that problem, K-means can be executed several

times and return the best (averaged) result on

output. However, this method may be time-

consuming.

The next disadvantage is the necessity of

providing K parameter on the algorithm's input. In

document clustering it is not easy to calculate the

optimal number of clusters and one general

solution does not exist for this issue [11]. A

possible approach is repeating execution of the

algorithm for different values of K each time and

choosing the best result (e.g. the one which has the

smallest average distance between documents and

centroids).

Hierarchical Agglomerative Clustering (HAC) is a

representative of hierarchical (bottom up)

algorithms [4]. It creates a similarity tree of all

objects that are to be clustered called a

dendogram. While clustering of the documents is

considered HAC treats each document as a

separate cluster and it uses a similarity (distance)

measure to merge a pair of them into one, bigger

cluster. Usually, during each iteration only 1 pair

of clusters is merged. It goes on until one, great

cluster is made. A tree of document dependencies

is created by HAC, which results in a cluster

hierarchy. Using typically Euclidean distance as

similarity measure, one of the following strategies

is taken to bind clusters together [4]:

 Single-link - the smallest distance between

neighbors is taken into consideration,

 Complete-link - the biggest distance between

neighbors is taken,

 Average-link (group-average) - at first, all

possible distances between neighbors are

calculated and finally the arithmetic mean is

calculated and taken into consideration,

 Centroid clustering - only similarity between

centroids of clusters is used.

In both cases objects belong only to one group, so

clusters do not overlap. This is a big

simplification of real life applications.

2.1 K-means as an alternative to HAC

HAC is a algorithm which may cause problems

with defining a threshold at which the dendogram

should be cut. Also it tends to be slow - only one

merging operation during iteration is performed.

This issue arises especially for documents

clustering where high dimensional spaces are

processed. Also there is no guide how to produce

high quality clusters from a dendogram. On the

other hand, it produces a hierarchy of the

clustered objects that while applied for document

categorization is a big advantage because it shows

conceptual structure of the documents set.

K-means can be used to produce hierarchy as

well as HAC, yet it is more complicated. K-

means itself produces only flat clusters. To make

a hierarchy K-means should be applied to each

cluster again. It can be repeated until single-item

clusters would be made and. This is a top-down

method of clustering. The other method could be

merging clusters into bigger ones, until we get

one cluster in the end. It would be a similar

approach as HAC, but hierarchy is obtained in

bottom-up approach.

The main problem with K-means is to determine

the number of expected clusters. One of the

attempts to estimate K was made in G-means

algorithm [2]. G-means (Gaussian-means) run

statistical tests against each cluster to test data

consistency with normal (Gaussian) distribution.

During each iteration G-means finds clusters

without normal distribution and divides them into

smaller clusters. Iterations end when all clusters

have normal distribution [2].

Another attempt was made in Seed K-means [5].

The Algorithm has two phases: seed extraction

and cluster creation. First phase consists in

determining initial K seeds by analyzing patterns.

A measure of seed goodness helps to distribute

them correctly in order to choose best initial

centroids. In the second phase K-means is used

with initial centroids as input.

2.2 0-step K-means

The 0-Step approach is an improvement for a K-

means algorithm. The basic idea of step 0 is to

initially group the data into pre-clusters. It is a

preparatory stage before launching K-means.

Text document are similar to each other in some

degree. The Vector Space Model (VSM) [8] text

representation with Term Frequency Inverse

Document Frequency (TFIDF) [7] weighting has

been used to calculate similarities between

documents.

Each of the documents is compared against each

other and if the similarity measure
1
 is beyond a

defined threshold then they fall into the same

group. When a document doesn't belong to any

group, then a new one is created. The listing

below shows pseudo-code of 0-step algorithm.

List stepZero(collection) {

 List groups = new List();

 foreach(document in collection) {

 if(groups.length == 0) {

 create new group;

 add document to new group;

 }

 foreach(group in groups) {

 foreach(doc in group) {

 if(similarity(doc,document) >

 DOCUMENT_SIMILARITY_THRESHOLD)

 {

 add document to group;

 break;

 }

 }

 }

 if(document not added to any group) {

 create new group;

 add document to new group;

 }

 }

 return groups;

}

Pseudo-code of 0-step K-means

Resulting groups of documents may overlap. The

number of groups becomes an estimation of K

parameter for K-means as well. Parameter

Document Similarity Threshold controls how

many groups (initial clusters) we will get. Usually

1
 Different similarity measures can be taken. Most

popular are Euclidean distance, Manhattan

distance, cosine similarity.

it is set empirically. Output of Step 0 goes on

input of K-means. This way we provide K and

initial centroids for K-means.

This approach stabilizes K-means, because each

time for the same input data Step 0 returns the

same groups. Thus the randomness of K-means is

eliminated and it takes less iterations to build

clusters.

2.2.1. Hierarchy through binding clusters

Binding clusters is an idea for creating a

hierarchy of clusters with a K-means algorithm.

K-means may produce many small clusters

compared to the total amount of data. These

clusters may be similar to some others, so they

can be bound into one group.

For each cluster (or cluster representative, e.g.

centroid) similarity to others is measured.

Clusters with the biggest similarity that exceeds

the given parameter Cluster Similarity Threshold

are bound in one group. Iterations end when no

more binding operation is made. The process of

clusters binding results in creation of a cluster

hierarchy that allows one to present documents on

different conceptual levels.

3. Evaluation measures

Evaluation of search result clustering is not a

simple task, because every person can group the

same set of documents differently. A single

person is always subjective. Because hand

assessment is time consuming, costly, and

uncomfortable to realize, methods for automatic

evaluation are needed. There are a number of

such methods, but they can be divided into two

main groups [6]:

Internal metrics. Is evaluation without external

knowledge and cohesion and distance of clusters

are validated here. Often these kind of metrics are

similar to an objective function of a clustering

algorithm that can be calculated as:

where sim() is similarity function. Internal

metrics are reported to be the best measures for

comparing clustering results on the same data

collection. However one has to keep in mind that

the whole computational environment cannot

change (e.g. similarity measures, clustering

algorithm, etc.).

External metrics. These metrics allow us to

evaluate the usefulness of received clusters

according to human made judgments. One of the

informal metrics is to collect feedback from users

of a clustering system in the form of

questionnaires. Another type of external metrics

are formal metrics based on a relevance set. The

most popular are Precision (P), Recall (R), F-

measure and Purity.

Precision is the percentage of retrieved

documents that are relevant:

Recall is defined as the percentage of relevant

documents that were retrieved:

F-measure is a composition of Precision and

Recall (weighted harmonic mean) and keeps a

balance between them [4]:

where β (1,∞) is a weight coefficient. For β = 1 F-

measure balances P and R. By increasing β we

put emphasis on Precision. Most common values

for β are 1, 3 and 5.

Purity can measured by selecting the number of

correctly assigned documents and dividing it by N

(total amount of documents), when each cluster is

assigned to the class which is most frequent in the

cluster:

where Ω represents clusters set, C is a set of

classes, ωk is k-th cluster and cj is j-th class.

4. System prototype

Based on 0-Step approach we have created a

prototype system named WikiClusterSearch. It can

automatically organize Wikipedia. For now only

Polish Wikipedia is supported.

WikiClusterSearch was written in C# in .NET 3.5

environment. Client side uses the advantage of

ASP.MVC 2.0 technology combined with jQuery

JavaScript library. The system is built in modular

architecture, each responsible for performing a

different task. Main modules are presented in

Figure 1.

Figure 1 WikiClusterSearch main modules

Figure 2 Snapshot of the system user interface available under

http://swn.eti.pg.gda.pl/UniversalSearch

WikiClusterSearch (WCS) has demonstrated

that Step 0 K-means can be used to obtain a good

quality clusters hierarchy. The system is available

on line under

http://swn.eti.pg.gda.pl/UniversalSearch. For a

given phrase it retrieves articles from Wikipedia

and forms clusters in the fly.

 Figure 2 shows example clusters formed by

WCS system for articles retrieved from Polish

Wikipedia for a query samochód (car).

5. Evaluation

Evaluation was performed using a relevance

set, which was prepared manually for 7 test

queries: kernel, nucleus, cat, equation car,

networks, atomic nucleus, catholic church. The

relevance set created manually was compared

against the clusters returned by WikiClusterSearch

system. Results of F-measure (F1and F5) and

Purity are shown in Table 1.

Table 1 Results of clustering pages for given

test queries

Query F1 F5 Purity

kernel 0.82 0.85 0.87

cat 0.89 0.91 0.91

equation 0.73 0.74 0.78

car 0.74 0.76 0.76

networks 0.85 0.87 0.88

atomic nucleus 0.71 0.70 0.89

catholic church 0.61 0.62 0.62

What can be seen from the obtained results;

Purity is kept on a high level for almost all

queries. These facts come as a result of the

number of clusters. WikiClusterSearch makes

quite a large number of clusters, thus they have

influence on the result. Purity takes into

consideration the number of documents which

belong to the most frequent class in that cluster. It

doesn't matter if cluster label (class) is different.

This is the disadvantage of a Purity metric.

An F-measure is a very popular metric used in

evaluation of text documents clustering. It's well

known to the Information Retrieval research

society and its documentation is kept on a high

standard level. It is also balancing (for β = 1)

Precision and Recall replacing both of them with

one metric. F5 puts emphasis on clustering

Precision. This situation is similar here as it was

with the Purity measure. A high level of this

metric indicates that clusters are of good quality

according to human judgments. Only clusters for

one query were scored below average.

6. Conclusions and future work

In this paper we presented our approach to

constructing clusters organized in a hierarchy for

text documents categorization. Step 0 as an

improvement for K-means, eliminates the issues

with the number of expected clusters, randomness,

and initial centroids.

Evaluation shows the system

WikiClusterSearch that employs the proposed

method produces high quality clusters. Its modular

architecture allows us to improve achieved results

and test other approaches to text clustering.

System implementation can be improved. Code

optimizations and cache would increase the speed

of the system. Now WikiClusterSearch supports

only Polish Wikipedia, and preprocessing of text

is written only for Polish text. We plan to extend it

to English and perhaps other languages.

Acknowledgment
This work was supported by the Polish Ministry of

Higher Education under research grant no. N

N519 432 338.

References
[1] S. Brin and L. Page. The anatomy of a large-scale

hypertextual Web search engine. Computer networks

and ISDN systems, 30(1-7):107–117, 1998.

[2] Greg Hamerly and Charles Elkan. Learning the k in

k-means. In Advances in Neural Information Processing

Systems, volume 17, 2003.

[3] J. B. MacQueen. Some methods for classification

and analysis of multivariate observations. In L. M. Le

Cam and J. Neyman, editors, Proc. of the fifth Berkeley

Symposium on Mathematical Statistics and Probability,

volume 1, pages 281–297. University of California

Press, 1967.

[4] Christopher D. Manning, Prabhakar Raghavan, and

Hinrich Schütze. Introduction to Information Retrieval.

Cambridge University Press, New York, 2008.

[5] Eun Mi Kang Miyoung Shin, Seon Hee Park.

Automatically finding good clusters with seed k-means.

Genome Informatics, 14:326–327, 2003.

[6] Magnus Rosell. Introduction to text clustering,

2008.

[7] Gerard Salton and Christopher Buckley. Term-

weighting approaches in automatic text retrieval.

Information Processing and Management, 24(5):513–

523, 1988.

[8] Gerard Salton, Anita Wong, and Chung-Shu Yang.

A vector space model for automatic indexing.

Communications of the ACM, 18(11):613–620, 1975.

[9] Bill Slawski. Just what was the first search engine?

http://www.seobythesea.com/?p=106.

[10] J. Szymański and W. Duch. Dynamic Semantic

Visual Information Management. Proceedings of the 9th

International Conference on Information and

Management Sciences, pages 107–117, 2010.

[11] R. Xu and D.C. Wunsch. Clustering. IEEE Press,

2009.

http://swn.eti.pg.gda.pl/UniversalSearch

