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Abstract 
 

This article describes an improvement for K-

means algorithm and its application in the form of 

a system that clusters search results retrieved 

from Wikipedia. The proposed algorithm 

eliminates K-means disadvantages and allows one 

to create a cluster hierarchy. The main 

contributions of this paper include the following: 

(1)   The concept of an improved K-means 

algorithm and its application for hierarchical 

clustering. (2) Description of the 

WikiClusterSearch system that employs the 

proposed algorithm to organize Wikipedia search 

results into clusters. 

 

1. Introduction 
 

    Since the beginning of the World Wide Web 

information retrieval has become a widely 

researched problem. The growing number of 

websites raises the need of development methods 

for finding resources effectively. Numerous 

approaches from Archie and Gopher to modern 

search engines have been developed [9].  In 1998 

Google started with its revolutionary PageRank 

[1] algorithm used for ranking a website’s content, 

and till now it is the dominant search engine. 

Beside its popularity, it has some drawbacks.   

A typical web search engine offers only line-up 

presentation of retrieved data. The end user 

receives a long list of results that match the query 

and are sorted according to some relevance 

measures.  Often we have to go through many 

links before we find those interesting to us. 

One way of improving organization within search 

results is introduction of categorization based on 

similarity measures between returned results (that 

can be treated as documents). The similarity 

allows one to organize the results into thematic 

groups which can be achieved applying clustering 

techniques. Clustering makes the search faster as it 

allows us to see the results on a higher level of 

abstraction. It improves searching quality, because 

users don't have to waste their time on irrelevant 

websites and are able to find groups of the most 

relevant. There are several projects aiming to 

group search results (e.g.: clusty, carrot
2
, 

PolyMeta and many others). The main problem 

with them is the fact the clusters they produce are 

not domain oriented – the labels they use weakly 

describe the content. The other drawback is the 

fixed similarity measure that compares documents 

according to the same, one criterion [10]. 

In our research we find Wikipedia very useful as 

the area of the experiments. Researching the 

limited repository of the documents allows us to 

tune the algorithms and after successful evaluation 

scale up them into the unlimited size of whole 

Internet. Wikipedia also offers the system of the 

categories that can be used as cluster labels which 

will make the categorization more user friendly. 

 

2. Clustering algorithms  
 

Clustering algorithms can be divided into two 

main groups: 

1. Hierarchical algorithms. During one step of the 

algorithm the smallest clusters are made. In the 

next steps  these groups are merged into bigger 

ones until one big cluster is made. As a result we 

get a hierarchical tree of clusters. 
2. Partitioning algorithms. This type of algorithm 

results with the creation of flat groups of the most 

similar objects.   
In this section we describe the K-means 

algorithm as the most popular partitioning 

algorithm and the Hierarchical Agglomerative 

Clustering algorithm as a demonstrator of a 

hierarchical, bottom-up approach.  

K-means  was described by James MacQueen [3] 

and it's widely used due to its simplicity. It 

requires to provide a priori number of desired 

clusters K and creates  centroids which are centers 

of each cluster. In each iteration documents are 

assigned to the nearest centroid. K-means starts 

with randomly selected points as centroids. Next it 

iterates through all points and assigns  each of 

them to the nearest centroid. As a result we 

receive first clusters. Next,  new centroids are 

calculated and everything starts from the 

beginning, until they stop moving. K-means 



minimize an objective function of squared error 

[11] described by the formula: 

 

        
   
    

 
 

   

 

   

 

 

where ||x
(j)

i-cj||
2
 is a distance measure between 

point  x
(j)

i and centroid cj.  

As we consider application of a K-means 

algorithm for documents clustering, the following 

steps can be selected: 

1. Mark as centroid random K documents, 

2. Assign to centroid nearest documents, 

3. When all documents are assigned, calculate 

new centroid positions. The centroid is an 

element laying exactly in the centre of a 

cluster. A new centroid is calculated as an 

arithmetic mean of every document 

represented as a point in feature space which 

is calculated as:  

 

     
              

  
   

              

  
  

 

4. Repeat steps 2 and 3 until centroids stop 

moving. 

Despite the fact K-means always finds clusters, it 

does not guarantee that they will be optimal. It has 

a tendency to fall into local minima [4] which 

results in non- optimal clusters as output. There's 

no guarantee to get a global minimum. Each K-

means execution on the same dataset can provide 

different results which is due to its random 

initialization - because initial centroids are 

selected randomly, the algorithm may return 

different results for the same input data. It is also a 

reason for falling into the local minima. This is the 

main disadvantage of K-means. In order to avoid 

that problem, K-means can be executed several 

times and return the best (averaged) result on 

output. However, this method may be time-

consuming. 

The next  disadvantage is the necessity of 

providing K parameter on the algorithm's input. In 

document clustering it is not easy to calculate the 

optimal number of clusters and one general 

solution does not exist for this issue [11]. A 

possible approach is repeating execution of the 

algorithm for different values of K each time and 

choosing the best result (e.g. the one which has the 

smallest average distance between documents and 

centroids). 

Hierarchical Agglomerative Clustering (HAC) is a 

representative of hierarchical (bottom up) 

algorithms [4]. It creates a similarity tree of all 

objects that are to be clustered called a 

dendogram. While clustering of the documents is 

considered HAC treats each document as a 

separate cluster and it uses a similarity (distance) 

measure to merge a pair of them into one, bigger 

cluster. Usually, during each iteration only 1 pair 

of clusters is merged. It goes on until one, great 

cluster is made. A tree of document dependencies 

is created by HAC, which results in a cluster 

hierarchy. Using typically Euclidean distance as 

similarity measure, one of the following strategies 

is taken to bind clusters together [4]: 

 Single-link - the smallest distance between 

neighbors is taken into consideration, 

 Complete-link - the biggest distance between 

neighbors is taken, 

 Average-link (group-average) - at first, all 

possible distances between neighbors are 

calculated and finally the arithmetic mean is 

calculated and taken into consideration, 

 Centroid clustering - only similarity between 

centroids of clusters is used. 

In both cases objects belong only to one group, so 

clusters do not overlap. This is a big 

simplification of real life applications. 

  

2.1 K-means as an alternative to HAC 
 

HAC is a algorithm which may cause problems 

with defining a threshold at which the dendogram 

should be cut. Also it tends to be slow - only one 

merging operation during iteration is performed. 

This issue arises especially for documents 

clustering where high dimensional spaces are 

processed. Also there is no guide how to produce 

high quality clusters from a dendogram. On the 

other hand, it produces a hierarchy of the 

clustered objects that while applied for document 

categorization is a big advantage because it shows 

conceptual structure of the documents set. 

K-means can be used to produce hierarchy as 

well as HAC, yet it is more complicated. K-

means itself produces only flat clusters. To make 

a hierarchy K-means should be applied to each 

cluster again. It can be repeated until single-item 

clusters would be made and. This is a top-down 

method of clustering.  The other method could be 

merging clusters into bigger ones, until we get 

one cluster in the end. It would be a similar 

approach as HAC, but hierarchy is obtained in 

bottom-up approach. 

The main problem with K-means is to determine 

the number of expected clusters. One of the 

attempts to estimate K was made in G-means 

algorithm [2]. G-means (Gaussian-means) run 

statistical tests against each cluster to test data 

consistency with normal (Gaussian) distribution. 

During each iteration G-means finds clusters 

without normal distribution and divides them into 

smaller clusters. Iterations end when all clusters 

have normal distribution [2]. 



Another attempt was made in Seed K-means [5]. 

The Algorithm has two phases: seed extraction 

and cluster creation. First phase consists in 

determining initial K seeds  by analyzing patterns. 

A measure of seed goodness helps to distribute 

them correctly in order to choose best initial 

centroids. In the second phase K-means is used 

with initial centroids as input. 

 

2.2 0-step K-means 
 

The 0-Step approach is an improvement for a K-

means algorithm. The basic idea of step 0 is to 

initially group the data into pre-clusters. It is a 

preparatory stage before launching K-means. 

Text document are similar to each other in some 

degree. The Vector Space Model (VSM) [8] text 

representation with Term Frequency Inverse 

Document Frequency (TFIDF) [7] weighting has 

been used to calculate similarities between 

documents.   

Each of the documents is compared against each 

other and if the similarity measure
1
 is beyond a 

defined threshold then they fall into the same 

group. When a document doesn't belong to any 

group, then a new one is created. The listing 

below shows pseudo-code of 0-step algorithm. 

 
List stepZero(collection) { 

  List groups = new List(); 

  foreach(document in collection) { 

    if(groups.length == 0) { 

      create new group; 

      add document to new group; 

    } 

    foreach(group in groups) { 

      foreach(doc in group) { 

        if(similarity(doc,document) >  

           DOCUMENT_SIMILARITY_THRESHOLD) 

        { 

          add document to group; 

          break; 

        } 

      } 

    } 

    if(document not added to any group) { 

      create new group; 

      add document to new group; 

    } 

  } 

  return groups; 

} 

 

Pseudo-code of 0-step K-means 

 

Resulting groups of documents may overlap. The 

number of groups becomes an estimation of K 

parameter for K-means as well. Parameter 

Document Similarity Threshold controls how 

many groups (initial clusters) we will get. Usually 

                                                           
1
 Different similarity measures can be taken. Most 

popular are Euclidean distance, Manhattan 

distance, cosine similarity. 

it is set empirically. Output of Step 0 goes on 

input of K-means. This way we provide K and 

initial centroids for K-means.  

This approach stabilizes K-means, because each 

time for the same input data Step 0 returns the 

same groups. Thus the randomness of K-means is 

eliminated and it takes less iterations to build 

clusters.  

 

2.2.1. Hierarchy through binding clusters 
 

Binding clusters is an idea for creating a 

hierarchy of clusters with a K-means algorithm. 

K-means may produce many small clusters 

compared to the total amount of data. These 

clusters may be similar to some others, so they 

can be bound into one group. 

For each cluster (or cluster representative, e.g. 

centroid) similarity to others is measured. 

Clusters with the biggest similarity that exceeds 

the given parameter Cluster Similarity Threshold 

are bound in one group. Iterations end when no 

more binding operation is made. The process of 

clusters binding results in creation of a cluster 

hierarchy that allows one to present documents on 

different conceptual levels.   

 

3. Evaluation measures 
 

Evaluation of search result clustering is not a 

simple task, because every person can group the 

same set of documents differently. A single 

person is always subjective. Because hand 

assessment is time consuming, costly, and 

uncomfortable to realize, methods for automatic 

evaluation are needed. There are a number of 

such methods, but they can be divided into two 

main groups [6]: 

Internal metrics. Is evaluation without external 

knowledge and cohesion and distance of clusters 

are validated here. Often these kind of metrics are 

similar to an objective function of a clustering 

algorithm that can be calculated as:  

 

      
 

   
                

    

 

 

where sim() is similarity function. Internal 

metrics are reported to be the best measures for 

comparing clustering results on the same data 

collection. However one has to keep in mind that 

the whole computational environment  cannot 

change (e.g. similarity measures, clustering 

algorithm, etc.). 

External metrics. These metrics allow us to 

evaluate the usefulness of received clusters 

according to human made judgments. One of the 

informal metrics is to collect feedback from users 

of a clustering system in the form of 



questionnaires. Another type of external metrics 

are formal metrics based on a relevance set. The 

most popular are Precision (P), Recall (R), F-

measure and Purity.  

Precision is the percentage of retrieved 

documents that are relevant: 

 

  
                            

                         
 

 

Recall is defined as the percentage of relevant 

documents that were retrieved: 

 

  
                            

                                  
 

 

F-measure is a composition of Precision and 

Recall (weighted harmonic mean) and keeps a 

balance between them [4]: 

 

   
        

     
 

 

where β (1,∞) is a weight coefficient. For β = 1 F-

measure balances P and R. By increasing β we 

put emphasis on Precision. Most common values 

for β are 1, 3 and 5. 

Purity can measured by selecting the number of 

correctly assigned documents and dividing it by N 

(total amount of documents), when each cluster is 

assigned to the class which is most frequent in the 

cluster:   

            
 

 
             

 

 

where Ω represents clusters set, C is a set of 

classes, ωk is k-th cluster and cj is j-th class. 

 

4. System prototype 
 

Based on 0-Step approach we have created a 

prototype system named WikiClusterSearch. It can 

automatically organize Wikipedia. For now  only 

Polish Wikipedia is supported.   

WikiClusterSearch was written in C# in .NET 3.5 

environment. Client side uses the advantage of 

ASP.MVC 2.0 technology combined with jQuery 

JavaScript library. The system is built in modular 

architecture, each responsible for performing a 

different task. Main modules are presented in 

Figure 1. 

 

 
Figure 1 WikiClusterSearch main modules 

 

 
Figure 2 Snapshot of the system user interface available under 

http://swn.eti.pg.gda.pl/UniversalSearch  



 

WikiClusterSearch (WCS) has demonstrated 

that Step 0 K-means can be used to obtain a good 

quality clusters hierarchy. The system is available 

on line under 

http://swn.eti.pg.gda.pl/UniversalSearch. For a 

given phrase  it retrieves articles from Wikipedia 

and forms  clusters in the fly.   

 Figure 2 shows example clusters formed by 

WCS system for articles retrieved from Polish 

Wikipedia for a query samochód  (car).  

 

5. Evaluation  
 

Evaluation was performed using a relevance 

set, which was prepared manually for 7 test 

queries: kernel, nucleus, cat, equation car, 

networks, atomic nucleus, catholic church. The 

relevance set created manually was compared 

against the clusters returned by WikiClusterSearch 

system. Results of F-measure (F1and F5) and 

Purity are shown in  Table 1.  

 

Table 1 Results of clustering pages for given 

test queries 

Query F1 F5 Purity 

kernel 0.82 0.85 0.87 

cat 0.89 0.91 0.91 

equation 0.73 0.74 0.78 

car 0.74 0.76 0.76 

networks 0.85 0.87 0.88 

atomic nucleus 0.71 0.70 0.89 

catholic church 0.61 0.62 0.62 

 

What can be seen from the obtained results; 

Purity is kept on a high level for almost all 

queries. These facts come as a result of the 

number of clusters. WikiClusterSearch makes 

quite a large number of clusters, thus they have 

influence on the result. Purity takes into 

consideration the number of documents which 

belong to the most frequent class in that cluster. It 

doesn't matter if cluster label (class) is different. 

This is the disadvantage of a Purity metric. 

An F-measure is a very popular metric used in 

evaluation of text documents clustering. It's well 

known to the Information Retrieval research 

society and its documentation is kept on a high 

standard level. It is also balancing (for β = 1) 

Precision and Recall replacing both of them with 

one metric. F5 puts emphasis on clustering 

Precision. This situation is similar here as it was 

with the Purity measure. A high level of this 

metric indicates that clusters are of good quality 

according to human judgments. Only clusters for 

one query were scored below average. 

6. Conclusions and future work 
 

In this paper we presented our approach to 

constructing clusters organized in a hierarchy for 

text documents categorization. Step 0 as an 

improvement for K-means, eliminates the issues 

with the number of expected clusters, randomness, 

and initial centroids.  

Evaluation shows the system 

WikiClusterSearch that employs the proposed 

method produces high quality clusters. Its modular 

architecture allows us to improve achieved results 

and test other approaches to text clustering. 

System implementation can be improved. Code 

optimizations and cache would increase the speed 

of the system. Now WikiClusterSearch supports 

only Polish Wikipedia, and preprocessing of text 

is written only for Polish text. We plan to extend it 

to English and perhaps other languages.   
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