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Abstract. Unsupervised organization of a set of lexical concepts that captures
common-sense knowledge inducting meaningful partitioning of data is described.
Projection of data on principal components allow for identification of clusters
with wide margins, and the procedure is recursively repeated within eachcluster.
Application of this idea to a simple dataset describing animals created hierarchi-
cal partitioning with each clusters related to a set of features that have common-
sense interpretation.

1 Introduction

Categorization of concepts into meaningful hierarchies lies at the foundation of under-
standing their meaning. Ontologies provide such hand-crafted hierarchical classifica-
tion, but they are based usually on expert knowledge, not on the common-sense knowl-
edge. For example, most biological taxonomies are hard to understand for lay people.
There is no relationship between linguistic labels and their referents, so words may only
point at the concept, inducing brain states that contain semantic information, predispos-
ing people to meaningful associations and answers. In particular visual similarity is not
related to names. Dog’s breeds are categorized depending ontheir function, like Sheep-
dogs and Cattle Dogs, Scenthounds, Pointing Dogs, Retrievers, Companion and Toy
Dogs, with many diverse breeds within each category. Such categories may have very
little in common when all properties are considered. Differences between two similar
dog breeds may be based on rare traits, not relevant to general classification. This makes
identification of objects by their description quite difficult and the problem of forming
common sense natural categories worth studying.

In this paper we have focused on relatively simple data describing animals. First,
this is a domain where everyone has relatively good understanding of similarity and
hierarchical description, second there is a lot of structured information in the Internet
resources that may be used to create detailed description ofthe animals, third one can
test the quality of such data by playing word games. We shall look at the novel way of
using principal component analysis (PCA) to create hierarchical descriptions, but many
other choices and other knowledge domains (for example, automatic classification of
library subjects) may be treated using similar methodology.



2 The data

The data used in the experiments has been obtained using automatic knowledge ac-
quisition followed by corrections resulting from the 20-questions word game [1]. The
point of this game is to guess the concept the opponent is thinking of by asking ques-
tions that should narrow down the set of likely concepts. In our implementation1 the
program is trying to make a guess asking people questions. Results are used to correct
lexical knowledge and in its final stage controlled dialog between human and computer,
based on several plausible scenarios, is added to acquire additional knowledge. If the
program wins, guessing the concept correctly, it will strengthen the knowledge related
to this concept. If it fails, human is asked additional question „What did you think of?”
and concepts related to the answer are added or features are modified according to the
information harvested during the game.

Implementation of our knowledge acquisition system based on the 20-question game
uses a semantic memory model [2] to store lexical concepts. This approach makes it
more versatile than using just correlation matrix, as it hasbeen successfully done in
the implementation of this word game2. The matrix stores correlations between objects
and features using weights that describe mutual association derived from thousands
of games, providing decomposition of each concepts into a sum of contributions from
questions. Such representation is flat and does not treat lexical features as natural lan-
guage concepts that allow for creation of a hierarchy of the common sense objects. Our
program, based on semantic memory representation, shows elementary linguistic com-
petence collecting common sense knowledge in restricted domains [1], and the knowl-
edge generated may be used in many ways, for example by generating word puzzles.

This lexical data in semantic memory may be reorganized in a way that will in-
troduce generalizations and increase cognitive economy [3]. This hierarchy is induced
searching for the directions with highest variance using PCA eigenvectors, separating
subsets of concepts and repeating the process to create consecutive subspaces. To il-
lustrate and better understand this process a relatively small experiment has been per-
formed.

A test dataset with 84 concepts (animals, or in general some objects) described by
71 features has been constructed after performing 346 games. The dataset used in the
experiments is displayed using Self-Organizing Map (SOM) [4] visualization in Fig.
1 and with parametric Multidimensional Scaling (MDS) [5] inFig. 2. Distances be-
tween points that represent dissimilarities between animals are calculated using cosine
measuresd(X,Z) = X · Z/||X||||Z||

3 PCA directions

Expert taxonomies are frequently based on single feature, such as mammals, and then
marsupials, but common-sense categorization is based on combination of features that
makes objects similar. Principal Component Analysis [6] finds directions of highest
data variance. Projecting the data on these direction showsinteresting combination of

1 http://diodor.eti.pg.gda.pl
2 http://www.20-q.net
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Fig. 1. Data used in the experiments visualized with Self-Organizing Map
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Fig. 2. The data used in the experiments visualized with MDS

features and thus helps to select groups of correlated features that separate data points,
creating subsets of animals.

A pair of PCA directions may be used for visualization of the data. Projection on
the first two directions with largest variance is shown in Fig. 3. The three visualiza-
tions (Figure 1, 2, 3) show different aspects of the data. Note for example the cluster
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Fig. 3. Dataset visualization using two highest Principal Components

formed in SOM containinglion, pantera andtiger. MDS shows their similarity but can
still distinguish between them, while in PCA projection some objects appear between
them (fox, bear) that do not fall into that cluster. PCA is able to find groups of related
features and thus extract some commonsense knowledge approximating meaningful di-
rections in the feature space. At the one end of the axis objects that have a mixture of
features making them similar to each other are placed, on theother end objects that do
not have such features. Fig. 4 shows coefficients of featuresin our semantic space for
the first six principal components. Each feature, such aslay-eggs, is-mammal is placed
above the line in one of the 6 columns, one for each component,to indicate the value
of its coefficient in PCA vector. The most important features(having the highest abso-
lute coefficient weights) in terms of data partitioning can be obtained from subsequent
components. In the first vector (lowest row) the most negative (leftmost) coefficients
correspond to featureslay-eggs, has-wings describing insects and birds, while the most
positive (right-most) are foris-mammal, has-teeth, has-coat, is-warmblooded, and oth-
ers typical for mammals. The second PCA component has most positive coefficients for
has-beak, has-bill, has-feathers, is-bird, has-wings indicating that this group of features
is characteristic for the birds.

Hierarchical clusterization for such groups of features should show interesting common-
sense clusters. In Fig. 5 direct projection of all vectors describing animals on each of
these principal directions is shown. These projections show different aspects of the data,
for example the projection on the second PCA shows a clear cluster for birds, starting
with swan and ending withowl as less typical bird, the third cluster starts withvulture
and groups other hunting animals. Projection on each PCA component may be used to
generate different partitions of all objects.
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Fig. 4. Groups of features related to the principal components
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Fig. 5. Projections of the data on the first 6 principal components



4 Creating hierarchical partitioning

4.1 Hierarchical agglomerative partitioning

Creating a hierarchy based on similarity is one of the most effective ways for present-
ing large sets of concepts. Clustering data using agglomerative approach [7] is most
frequently used for showing hierarchical organization of the data. The bottom-up ap-
proach using average linkage between clusters on each hierarchy level is shown in Fig.
6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

hu
m

an gi
rl

bo
y

ne
an

de
rt

al
m

on
ke

y
ap

e
be

ar
pa

nt
he

ra
tig

er
lio

n
ca

t
fo

x
di

ng
o

do
m

es
tic

do
g

do
g

w
ol

f
co

yo
te

hi
pp

op
ot

am
us

el
ep

ha
nt

ze
br

a
ra

bb
it

la
m

b
ka

ng
ar

oo
ho

rs
e

ca
lf

fe
m

al
ec

ow bu
ll

bu
ffa

lo
an

te
lo

pe
gi

ra
ffe

ca
m

el
un

ih
or

n
pi

g
do

nk
ey

go
at

m
ul

e
ko

al
a

sq
ui

rr
el

m
ou

se ra
t

ha
m

st
er

pl
at

yp
us ba

t
ty

rr
an

os
au

r
dr

ag
on

cr
oc

od
ile

ra
ttl

es
na

ke
co

ns
tr

ic
to

rs
na

ke
vi

pe
r

ge
ko

n
tu

rt
le

fr
og

to
ad

sp
ar

ro
w

tu
ka

n
sp

ar
ro

w
pi

ge
on

sw
an

vu
ltu

re
st

or
k

go
os

e
du

ck
he

n
tu

rk
ey

ro
os

te
r

pe
ng

ui
n

ow
l

sa
lm

on
he

rr
in

g
sh

ar
k

do
lp

hi
n

w
ha

le
m

os
qu

ito fly
bu

tte
rf

ly
sp

id
er an

t
w

as
p

be
e

m
ot

h
gr

as
sh

op
pe

r
ca

te
rp

ill
ar

sn
ai

l
w

or
m

Fig. 6. Dendogram for animal kingdom dataset

Hierarchical agglomerative clustering using bottom-up approach binds together groups
of objects in a way that frequently does not agree with intuitive partitioning. Moreover,
the features used to construct a cluster are not easily traceable.

4.2 Hierarchical partitioning with principal components

The distribution of the data points using the first 6 principal components (Fig. 5 ) shows
a large gap between two groups projected with the second principal component. These
two clusters of data are separated with the largest margin and thus should be mean-
ingful. Hierarchical organization of the data can be analyzed from the point of view of
graph theory. In terms of the graph bisection the second eigenvector is most important
[8], allowing for creation of normalized cut (partition of the vertices of a graph into
two disjoint subsets) [9]. Thus selecting the second principal component is a good start
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Fig. 7. Projections of the reduced data set using succeeding single principal components

to construct hierarchical partitioning. The typical approaches to spectral clustering em-
ploys second (biggest) component [10] (that minimize graphconductance) or a second
smallest component [11] (due to Rayleigh theorem).

Analyzing subsequent PCA component projections (given in Fig. 5 and 7) shows
that the second principal component does not lead always to the best cut in the graph.
It is better to select the component that produces the widestseparation margin within
the data, choosing a different principal component for eachhierarchy level. For creating
the first hierarchy level the second component is selected, separating birds from other
animals, creating one pure and one mixed cluster (Fig. 5). Features of the second PCA
component (Fig. 4) with lowest and highest weights include:(-)climb, (-)cold-blooded
and (+)beak, (+)feather, (+)bird, (+)wing, (+)warmblooded. Note that one featureis-
bird alone is sufficient to create this partitioning but correlated features separate this
cluster in a better way.

To capture some common-sense knowledge hierarchical partitioning is created in a
top-down way Each of the newly created clusters is analyzed using PCA and principal
components that give the widest separation margins are selected for data partitioning.
PCA is performed recursively on reduced data that belong to the selected cluster. In Fig.
7 the first 6 components computed for the large mixed cluster (that does not contain
birds) created on the second hierarchy level is presented. This cluster has been formed
after separating the birds and other animals with the secondcomponent (shown in Fig-



Fig. 8. Hierarchy of the data and features used to create it

ure 5). Within this cluster the widest margin is created withthe first component and it
separate mammals (with the exception of dolphins and whales) from other animals.

Repeating the process described above hierarchical organization of the data is intro-
duced. In Fig. 8 a top part of created hierarchy is shown. At each level of the hierarchy
most important features used to create this partition are also displayed.

5 Discussion and future directions

An approach to create hierarchical commonsense partitioning of data using recursive
Principal Component Analysis has been presented. Results of this procedure have been
illustrated on simple data describing animals created using the 20-questions game that
is based on model of semantic memory [1]. This approach has been used for creat-
ing general clusters within the semantic memory model that stores natural language
concepts. Such analysis allows for finding additional correlations between features fa-
cilitating associative processes for existing concepts, and improving the learning proces
when new information is added to the system. In the neurolinguistic approach to the
natural language processing [12] it has been conjectured that the right brain hemisphere



creates receptive fields (called “cosets", or constraint-sets) that constrain semantic inter-
pretation, although they do not have linguistic labels themselves. The process describe
here may be an approximation ot some of the neural processes responsible for language
comprehension.

Hierarchical organization of lexical data has been createdhere in an unsupervised
way by selecting linear combinations of features that provide clear separation of con-
cepts. Extension of this approach may be based on bi-clustering, taking into account
clusters of features that are relevant for creating meaningful clusters of data. The main
idea is to strengthen features that are correlated to the dominant one, or to the features
given by the user who may want to view the data from a specific angle [13]. Non-
negative matrix factorization [14] is another useful technique that may replace PCA.
Many other variants of unsupervised data analysis methods are worth exploring in the
context of this approach to induction of the common-sense hierarchies in data.
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