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Abstract. Unsupervised organization of a set of lexical concepts that captures
common-sense knowledge inducting meaningful partitioning of data gsibes.
Projection of data on principal components allow for identification of clsster
with wide margins, and the procedure is recursively repeated withincaster.
Application of this idea to a simple dataset describing animals created Hierarc
cal partitioning with each clusters related to a set of features that havaaom
sense interpretation.

1 Introduction

Categorization of concepts into meaningful hierarchies &t the foundation of under-
standing their meaning. Ontologies provide such handexdfierarchical classifica-
tion, but they are based usually on expert knowledge, nohercdmmon-sense knowl-
edge. For example, most biological taxonomies are hard denstand for lay people.
There is no relationship between linguistic labels and ttedérents, so words may only
point at the concept, inducing brain states that contairaséiminformation, predispos-
ing people to meaningful associations and answers. Incpdattivisual similarity is not

related to names. Dog’s breeds are categorized dependihgiofunction, like Sheep-

dogs and Cattle Dogs, Scenthounds, Pointing Dogs, Retsie@®@mpanion and Toy
Dogs, with many diverse breeds within each category. Sutdgodes may have very
little in common when all properties are considered. Déferes between two similar
dog breeds may be based on rare traits, not relevant to gefessification. This makes
identification of objects by their description quite difficand the problem of forming

common sense natural categories worth studying.

In this paper we have focused on relatively simple data d@agranimals. First,
this is a domain where everyone has relatively good undedstg of similarity and
hierarchical description, second there is a lot of strieztunformation in the Internet
resources that may be used to create detailed descriptitie @himals, third one can
test the quality of such data by playing word games. We sbak ht the novel way of
using principal component analysis (PCA) to create hidiaed descriptions, but many
other choices and other knowledge domains (for examplenaatic classification of
library subjects) may be treated using similar methodalogy



2 Thedata

The data used in the experiments has been obtained usingnaticcknowledge ac-
quisition followed by corrections resulting from the 20egtions word game [1]. The
point of this game is to guess the concept the opponent ikitigrof by asking ques-
tions that should narrow down the set of likely concepts. un implementatioh the
program is trying to make a guess asking people questiorsslRere used to correct
lexical knowledge and in its final stage controlled dialogheeen human and computer,
based on several plausible scenarios, is added to acqulittoad! knowledge. If the
program wins, guessing the concept correctly, it will sgtbien the knowledge related
to this concept. If it fails, human is asked additional gisegsfWhat did you think of?”
and concepts related to the answer are added or featuresdifenh according to the
information harvested during the game.

Implementation of our knowledge acquisition system basetie 20-question game
uses a semantic memory model [2] to store lexical concefpiis. 8pproach makes it
more versatile than using just correlation matrix, as it beasn successfully done in
the implementation of this word gamerhe matrix stores correlations between objects
and features using weights that describe mutual assatidgoved from thousands
of games, providing decomposition of each concepts intanaaucontributions from
questions. Such representation is flat and does not trdaaldégatures as natural lan-
guage concepts that allow for creation of a hierarchy of tmaroon sense objects. Our
program, based on semantic memory representation, shemeetary linguistic com-
petence collecting common sense knowledge in restrictethdts [1], and the knowl-
edge generated may be used in many ways, for example by jeges@rd puzzles.

This lexical data in semantic memory may be reorganized irag that will in-
troduce generalizations and increase cognitive econoinyf s hierarchy is induced
searching for the directions with highest variance using\R{@envectors, separating
subsets of concepts and repeating the process to createcotime subspaces. To il-
lustrate and better understand this process a relativedyl &xperiment has been per-
formed.

A test dataset with 84 concepts (animals, or in general sdijexis) described by
71 features has been constructed after performing 346 garnesdataset used in the
experiments is displayed using Self-Organizing Map (SO#M)\visualization in Fig.
1 and with parametric Multidimensional Scaling (MDS) [5] kig. 2. Distances be-
tween points that represent dissimilarities between dasiara calculated using cosine
measures(X,Z) = X - Z/||X]||||Z||

3 PCA directions

Expert taxonomies are frequently based on single featuod, 8s mammals, and then
marsupials, but common-sense categorization is basedrhication of features that
makes objects similar. Principal Component Analysis [6fiirdirections of highest
data variance. Projecting the data on these direction sheresting combination of

! http://diodor.eti.pg.gda.pl
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ANIMAL KINGDOM
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Fig. 1. Data used in the experiments visualized with Self-Organizing Map
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Fig. 2. The data used in the experiments visualized with MDS

features and thus helps to select groups of correlatedrésatinat separate data points,
creating subsets of animals.

A pair of PCA directions may be used for visualization of ttagad Projection on
the first two directions with largest variance is shown in.FdgThe three visualiza-
tions (Figure 1, 2, 3) show different aspects of the dataeNot example the cluster
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Fig. 3. Dataset visualization using two highest Principal Components

formed in SOM containingjon, pantera andtiger. MDS shows their similarity but can
still distinguish between them, while in PCA projection soobjects appear between
them (ox, bear) that do not fall into that cluster. PCA is able to find groupsedated
features and thus extract some commonsense knowledgexappting meaningful di-
rections in the feature space. At the one end of the axis tbibat have a mixture of
features making them similar to each other are placed, oattter end objects that do
not have such features. Fig. 4 shows coefficients of featarear semantic space for
the first six principal components. Each feature, suckagasggs, issmammal is placed
above the line in one of the 6 columns, one for each compoteitidicate the value
of its coefficient in PCA vector. The most important featuftesving the highest abso-
lute coefficient weights) in terms of data partitioning candbtained from subsequent
components. In the first vector (lowest row) the most negatieftmost) coefficients
correspond to featuréay-eggs, has-wings describing insects and birds, while the most
positive (right-most) are fais-mammal, has-teeth, has-coat, is-warmblooded, and oth-
ers typical for mammals. The second PCA component has meiiveccoefficients for
has-beak, has-hill, has-feathers, is-bird, has-wingsindicating that this group of features
is characteristic for the birds.

Hierarchical clusterization for such groups of featuresgth show interesting common-
sense clusters. In Fig. 5 direct projection of all vectorscdi®ing animals on each of
these principal directions is shown. These projectiongtifferent aspects of the data,
for example the projection on the second PCA shows a cleatelfor birds, starting
with swan and ending wittowl as less typical bird, the third cluster starts withture
and groups other hunting animals. Projection on each PCApooent may be used to
generate different partitions of all objects.
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Fig. 4. Groups of features related to the principal components
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4 Creating hierarchical partitioning

4.1 Hierarchical agglomerative partitioning

Creating a hierarchy based on similarity is one of the mdstfe ways for present-
ing large sets of concepts. Clustering data using aggldierapproach [7] is most
frequently used for showing hierarchical organizationhef tlata. The bottom-up ap-
proach using average linkage between clusters on eachdiigriavel is shown in Fig.

6.

Fig. 6. Dendogram for animal kingdom dataset

Hierarchical agglomerative clustering using bottom-uprapch binds together groups
of objects in a way that frequently does not agree with iiveipartitioning. Moreover,
the features used to construct a cluster are not easilyeaioéee

4.2 Hierarchical partitioning with principal components

The distribution of the data points using the first 6 printgmmponents (Fig. 5) shows
a large gap between two groups projected with the secondipalncomponent. These
two clusters of data are separated with the largest marginttaurs should be mean-
ingful. Hierarchical organization of the data can be anediyfrom the point of view of

graph theory. In terms of the graph bisection the secondhe@gtor is most important

[8], allowing for creation of normalized cut (partition dfi¢ vertices of a graph into
two disjoint subsets) [9]. Thus selecting the second ppaictomponent is a good start
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Fig. 7. Projections of the reduced data set using succeeding single princippboents

to construct hierarchical partitioning. The typical apgebes to spectral clustering em-
ploys second (biggest) component [10] (that minimize greqiductance) or a second
smallest component [11] (due to Rayleigh theorem).

Analyzing subsequent PCA component projections (givenign & and 7) shows
that the second principal component does not lead alwayeetbest cut in the graph.
It is better to select the component that produces the wikgsdration margin within
the data, choosing a different principal component for daefarchy level. For creating
the first hierarchy level the second component is selecegmirating birds from other
animals, creating one pure and one mixed cluster (Fig. Btures of the second PCA
component (Fig. 4) with lowest and highest weights inclyggelimb, (-)cold-blooded
and (+peak, (+)feather, (+)bird, (+)wing, (+)warmblooded. Note that one features-
bird alone is sufficient to create this partitioning but correthfeatures separate this
cluster in a better way.

To capture some common-sense knowledge hierarchicalipairtig is created in a
top-down way Each of the newly created clusters is analysgtyuPCA and principal
components that give the widest separation margins aretedlér data partitioning.
PCA is performed recursively on reduced data that belonggaaselected cluster. In Fig.
7 the first 6 components computed for the large mixed clusitet does not contain
birds) created on the second hierarchy level is presentad.cluster has been formed
after separating the birds and other animals with the secontghonent (shown in Fig-
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Fig. 8. Hierarchy of the data and features used to create it

ure 5). Within this cluster the widest margin is created wfité first component and it
separate mammals (with the exception of dolphins and whata®s other animals.

Repeating the process described above hierarchical @aagam of the data is intro-
duced. In Fig. 8 a top part of created hierarchy is shown. shdeavel of the hierarchy
most important features used to create this partition a@dikplayed.

5 Discussion and futuredirections

An approach to create hierarchical commonsense partigoof data using recursive
Principal Component Analysis has been presented. Redutis@rocedure have been
illustrated on simple data describing animals createdgutsia 20-questions game that
is based on model of semantic memory [1]. This approach has beed for creat-

ing general clusters within the semantic memory model ttaes natural language
concepts. Such analysis allows for finding additional datiens between features fa-
cilitating associative processes for existing conceptd,improving the learning proces
when new information is added to the system. In the neuroigtig approach to the

natural language processing [12] it has been conjectueddtta right brain hemisphere



creates receptive fields (called “cosets"”, or constratg)shat constrain semantic inter-
pretation, although they do not have linguistic labels thelwes. The process describe
here may be an approximation ot some of the neural processesrrsible for language
comprehension.

Hierarchical organization of lexical data has been creberé in an unsupervised
way by selecting linear combinations of features that mte\dlear separation of con-
cepts. Extension of this approach may be based on bi-clogteaking into account
clusters of features that are relevant for creating medmlictusters of data. The main
idea is to strengthen features that are correlated to thendmmnone, or to the features
given by the user who may want to view the data from a specifiggeafi3]. Non-
negative matrix factorization [14] is another useful tegae that may replace PCA.
Many other variants of unsupervised data analysis methedsarth exploring in the
context of this approach to induction of the common-sensghthies in data.
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